Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
BMJ Case Rep ; 17(2)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38417945

ABSTRACT

Alagille syndrome (AGS) is a genetic disorder due to mutations in the JAGGED 1 or NOTCH 2 genes leading to multisystemic manifestations. Though these patients are at risk of developing various liver tumours, no cases of hepatoblastoma among young children with cirrhosis in AGS have been reported. We report a male toddler, with cirrhosis due to AGS who developed a hepatoblastoma. He underwent a liver transplant for decompensated chronic liver disease with marked pruritus, very high alpha-fetoprotein levels and malignant liver lesions on positron emission tomography CT. His explant histology revealed a paucity of bile ducts and liver lesions turned out to be hepatoblastoma for which he received postoperative chemotherapy. The genetic testing sent before transplantation confirmed the clinical diagnosis of AGS. Hepatoblastoma should be suspected in any child with AGS presenting with a right upper quadrant mass even in the setting of chronic liver disease.


Subject(s)
Alagille Syndrome , Hepatoblastoma , Liver Neoplasms , Humans , Male , Infant , Child, Preschool , Alagille Syndrome/complications , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Hepatoblastoma/complications , Hepatoblastoma/diagnosis , Hepatoblastoma/genetics , Tomography, X-Ray Computed , Liver Neoplasms/complications , Liver Cirrhosis/complications
2.
J Gastroenterol Hepatol ; 39(5): 964-974, 2024 May.
Article in English | MEDLINE | ID: mdl-38323732

ABSTRACT

BACKGROUND AND AIM: Advances in molecular genetics have uncovered causative genes responsible for neonatal cholestasis. Panel-based next-generation sequencing has been used clinically in infants with neonatal cholestasis. We aimed to evaluate the clinical application of single-gene testing and next-generation sequencing and to develop a diagnostic algorithm for neonatal intrahepatic cholestasis. METHODS: From January 2010 to July 2021, patients suspected of having neonatal intrahepatic cholestasis were tested at the Seoul National University Hospital. If there was a clinically suspected disease, single-gene testing was performed. Alternatively, if it was clinically difficult to differentiate, a neonatal cholestasis gene panel test containing 34 genes was performed. RESULTS: Of the total 148 patients examined, 49 (33.1%) were received a confirmed genetic diagnosis, including 14 with Alagille syndrome, 14 with neonatal intrahepatic cholestasis caused by citrin deficiency, 7 with Dubin-Johnson syndrome, 5 with arthrogryposis-renal dysfunction-cholestasis syndrome, 5 with progressive familial intrahepatic cholestasis type II, 1 with Rotor syndrome, 1 with Niemann-Pick disease type C, 1 with Kabuki syndrome, and 1 with Phenylalanyl-tRNA synthetase subunit alpha mutation. Sixteen novel pathogenic or likely pathogenic variants of neonatal cholestasis were observed in this study. Based on the clinical characteristics and laboratory findings, we developed a diagnostic algorithm for neonatal intrahepatic cholestasis by integrating single-gene testing and next-generation sequencing. CONCLUSIONS: Alagille syndrome and neonatal intrahepatic cholestasis caused by citrin deficiency were the most common diseases associated with genetic neonatal cholestasis. Single-gene testing and next-generation sequencing are important and complementary tools for the diagnosis of genetic neonatal cholestasis.


Subject(s)
Algorithms , Cholestasis, Intrahepatic , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/diagnosis , High-Throughput Nucleotide Sequencing/methods , Infant, Newborn , Genetic Testing/methods , Male , Female , Alagille Syndrome/genetics , Alagille Syndrome/diagnosis , Infant
3.
Curr Opin Cell Biol ; 86: 102302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194749

ABSTRACT

Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.


Subject(s)
Alagille Syndrome , Humans , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Alagille Syndrome/therapy , Serrate-Jagged Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Calcium-Binding Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein/genetics
4.
Sci Rep ; 14(1): 1812, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245625

ABSTRACT

Alagille Syndrome (ALGS) is a complex genetic disorder characterized by cholestasis, congenital cardiac anomalies, and butterfly vertebrae. The variable phenotypic expression of ALGS can lead to challenges in accurately diagnosing affected infants, potentially resulting in misdiagnoses or underdiagnoses. This study highlights novel JAG1 gene mutations in two cases of ALGS. The first case with a novel p.Pro325Leufs*87 variant was diagnosed at 2 months of age and exhibited a favorable prognosis and an unexpected manifestation of congenital hypothyroidism. Before the age of 2, the second patient was incorrectly diagnosed with liver structural abnormalities, necessitating extensive treatment. In addition, he exhibited delays in language acquisition that may have been a result of SNAP25 haploinsufficiency. The identification of ALGS remains challenging, highlighting the importance of early detection and genetic testing for effective patient management. The variant p.Pro325Leufs*87 is distinct from reported variants linked to congenital hypothyroidism in ALGS patients, thereby further confirming the clinical and genetic complexity of ALGS. This emphasizes the critical need for individualized and innovative approaches to diagnosis and medical interventions, uniquely intended to address the complexity of this syndrome.


Subject(s)
Alagille Syndrome , Congenital Hypothyroidism , Humans , Infant , Male , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , China , Congenital Hypothyroidism/genetics , Genetic Testing , Jagged-1 Protein/genetics
5.
Liver Int ; 44(2): 541-558, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014627

ABSTRACT

BACKGROUND & AIMS: Alagille syndrome (ALGS) manifests with peripheral intrahepatic bile duct (IHBD) paucity, which can spontaneously resolve. In a model for ALGS, Jag1Ndr/Ndr mice, this occurs with distinct architectural mechanisms in hilar and peripheral IHBDs. Here, we investigated region-specific IHBD characteristics and addressed whether IGF1, a cholangiocyte mitogen that is downregulated in ALGS and in Jag1Ndr/Ndr mice, can improve biliary outcomes. METHODS: Intrahepatic cholangiocyte organoids (ICOs) were derived from hilar and peripheral adult Jag1+/+ and Jag1Ndr/Ndr livers (hICOs and pICOs, respectively). ICOs were grown in Matrigel or microwell arrays, and characterized using bulk RNA sequencing, immunofluorescence, and high throughput analyses of nuclear sizes. ICOs were treated with IGF1, followed by analyses of growth, proliferation, and death. CellProfiler and Python scripts were custom written for image analyses. Key results were validated in vivo by immunostaining. RESULTS: Cell growth assays and transcriptomics demonstrated that Jag1Ndr/Ndr ICOs were less proliferative than Jag1+/+ ICOs. IGF1 specifically rescued survival and growth of Jag1Ndr/Ndr pICOs. Jag1Ndr/Ndr hICOs were the least proliferative, with lower Notch signalling and an enrichment of hepatocyte signatures and IGF uptake/transport pathways. In vitro (Jag1Ndr/Ndr hICOs) and in vivo (Jag1Ndr/Ndr hilar portal tracts) analyses revealed ectopic HNF4a+ hepatocytes. CONCLUSIONS: Hilar and peripheral Jag1Ndr/Ndr ICOs exhibit differences in Notch signalling status, proliferation, and cholangiocyte commitment which may result in cholangiocyte-to-hepatocyte transdifferentiation. While Jag1Ndr/Ndr pICOs can be rescued by IGF1, hICOs are unresponsive, perhaps due to their hepatocyte-like state and/or expression of IGF transport components. IGF1 represents a potential therapeutic for peripheral bile ducts.


Subject(s)
Alagille Syndrome , Biliary Tract , Mice , Animals , Alagille Syndrome/genetics , Bile Ducts , Bile Ducts, Intrahepatic , Organoids/metabolism
6.
Pharmacol Res ; 199: 107006, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000562

ABSTRACT

Gallbladder and biliary diseases (GBDs) are one of the most common digestive diseases. The connections between GBDs and several organs other than the liver have gradually surfaced accompanied by the changes in people's diet structure and the continuous improvement of medical diagnosis technology. Among them, cholecardia syndrome that takes the heart as the important target of GBDs complications has been paid close attention. However, there are still no systematic report about its corresponding clinical manifestations and pathogenesis. This review summarized recent reported types of cholecardia syndrome and found that arrhythmia, myocardial injury, acute coronary syndrome and heart failure are common in the general population. Besides, the clinical diagnosis rate of intrahepatic cholestasis of pregnancy (ICP) and Alagille syndrome associated with gene mutation is also increasing. Accordingly, the underlying pathogenesis including abnormal secretion of bile acid, gene mutation, translocation and deletion (JAG1, NOTCH2, ABCG5/8 and CYP7A1), nerve reflex and autonomic neuropathy were further revealed. Finally, the potential treatment measures and clinical medication represented by ursodeoxycholic acid were summarized to provide assistance for clinical diagnosis and treatment.


Subject(s)
Alagille Syndrome , Cholestasis, Intrahepatic , Pregnancy Complications , Female , Pregnancy , Humans , Alagille Syndrome/complications , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Cholestasis, Intrahepatic/complications , Cholestasis, Intrahepatic/drug therapy , Ursodeoxycholic Acid/therapeutic use
7.
Hepatol Commun ; 7(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38055640

ABSTRACT

Alagille syndrome and progressive familial intrahepatic cholestasis are conditions that can affect multiple organs. Advancements in molecular testing have aided in the diagnosis of both. The impairment of normal bile flow and secretion leads to the various hepatic manifestations of these diseases. Medical management of Alagille syndrome and progressive familial intrahepatic cholestasis remains mostly targeted on supportive care focusing on quality of life, cholestasis, and fat-soluble vitamin deficiency. The most difficult therapeutic issue is typically related to pruritus, which can be managed by various medications such as ursodeoxycholic acid, rifampin, cholestyramine, and antihistamines. Surgical operations were previously used to disrupt enterohepatic recirculation, but recent medical advancements in the use of ileal bile acid transport inhibitors have shown great efficacy for the treatment of pruritus in both Alagille syndrome and progressive familial intrahepatic cholestasis.


Subject(s)
Alagille Syndrome , Cholestasis , Humans , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Alagille Syndrome/therapy , Quality of Life , Pruritus/diagnosis , Pruritus/surgery
8.
Stem Cell Res ; 73: 103231, 2023 12.
Article in English | MEDLINE | ID: mdl-37890331

ABSTRACT

Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in either the JAG1 gene (ALGS type 1) or the NOTCH2 gene (ALGS type 2). The disease has been difficult to diagnose and treat due to its muti-system clinical presentation, variable expressivity, and prenatal onset for some of the features. The generation of this iPSC line (TRNDi032-A) carrying a heterozygous mutation, p.Cys682Leufs*7 (c.2044dup), in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.


Subject(s)
Alagille Syndrome , Induced Pluripotent Stem Cells , Humans , Alagille Syndrome/genetics , Alagille Syndrome/diagnosis , Alagille Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mutation/genetics
9.
Stem Cell Res ; 72: 103213, 2023 10.
Article in English | MEDLINE | ID: mdl-37774637

ABSTRACT

Alagille syndrome (ALGS) is a multisystem disease with high variability in clinical features. ALGS is predominantly caused by pathogenic variants in the Notch ligand JAG1. An iPSC line, NCHi011-A, was generated from a ALGS patient with complex cardiac phenotypes consisting of pulmonic valve and branch pulmonary artery stenosis. NCHi011-A is heterozygous for a single base duplication causing a frameshift in the JAG1 gene. This iPSC line demonstrates normal cellular morphology, expression of pluripotency markers, trilineage differentiation potential, and identity to the source patient. NCHi011-A provides a resource for modeling ALGS and investigating the role of Notch signaling in the disease.


Subject(s)
Alagille Syndrome , Induced Pluripotent Stem Cells , Female , Humans , Young Adult , Adult , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Heart , Cell Differentiation
10.
Expert Rev Gastroenterol Hepatol ; 17(9): 883-892, 2023.
Article in English | MEDLINE | ID: mdl-37668532

ABSTRACT

INTRODUCTION: Alagille syndrome (ALGS) is an autosomal dominant, multisystem genetic disorder with wide phenotypic variability caused by mutations in the Notch signaling pathway, specifically from mutations in either the Jagged1 (JAG1) or NOTCH2 gene. The range of clinical features in ALGS can involve various organ systems including the liver, heart, eyes, skeleton, kidney, and vasculature. Despite the genetic mutations being well-defined, there is variable expressivity and individuals with the same mutation may have different clinical phenotypes. AREAS COVERED: While no clear genotype-phenotype correlation has been identified in ALGS, this review will summarize what is currently known about the genotype-phenotype relationship and how this relationship influences the treatment of the multisystemic disorder. This review includes discussion of numerous studies which have focused on describing the genotype-phenotype relationship of different organ systems in ALGS as well as relevant basic science and population studies of ALGS. A thorough literature search was completed via the PubMed and National Library of Medicine GeneReviews databases including dates from 1969, when ALGS was first identified, to February 2023. EXPERT OPINION: The genetics of ALGS are well defined; however, ongoing investigation to identify genotype-phenotype relationships as well as genetic modifiers as potential therapeutic targets is needed. Clinicians and patients alike would benefit from identification of a correlation to aid in diagnostic evaluation and management.


Subject(s)
Alagille Syndrome , Humans , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Alagille Syndrome/therapy , Mutation , Phenotype , Genotype
11.
Stem Cell Res ; 71: 103177, 2023 09.
Article in English | MEDLINE | ID: mdl-37549562

ABSTRACT

Alagille syndrome (ALGS) is an autosomal dominant disease affecting the liver, heart and other organs with high variability. About 95% of ALGS cases are associated with pathogenic variants in JAG1, encoding the Jagged1 ligand that binds to Notch receptors. The iPSC line NCHi012-A was derived from an ALGS patient with cholestatic liver disease and mild pulmonary stenosis, who is heterozygous for a 2 bp deletion in the JAG1 coding sequence. We report here an initial characterization of NCHi012-A to evaluate its morphology, pluripotency, differentiation potential, genotype, karyotype and identity to the source patient.


Subject(s)
Alagille Syndrome , Induced Pluripotent Stem Cells , Humans , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Receptors, Notch/metabolism , Heart , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism
12.
Gastroenterol Nurs ; 46(6): 436-444, 2023.
Article in English | MEDLINE | ID: mdl-37581873

ABSTRACT

Alagille syndrome is a rare and complex pleiotropic multisystem disorder caused by an autosomal dominant genetic mutation of JAG1 (90%) and NOTCH2 (1%-2%) genes located on the short arm of chromosome 20. This case is reported as per the CA se RE ports (CARE) guidelines (2013). A 14-year-old boy who is a known case of chronic cholestatic liver disease of neonatal onset, was diagnosed with Alagille syndrome as evident from a NOTCH 2 mutation in genetic analysis and paucity of intrahepatic bile ducts on biopsy. He presented with portal hypertension, growth failure, and persistent hyperbilirubinemia. This case highlights the gamut of multisystem dysfunctions faced by this child. He is currently on conservative management and worked up for liver transplantation. The condition is often rare and challenging due to the multisystem pathogenesis. Thus, the nursing care is also multifaceted. This case study identified relevant North American Nursing Diagnosis Association (NANDA) Classification, Nursing Interventions Classification (NIC), and Nursing Outcomes Classification (NOC) concepts to describe care of children with Alagille syndrome based on actual patient data.


Subject(s)
Alagille Syndrome , Standardized Nursing Terminology , Male , Child , Infant, Newborn , Humans , Adolescent , Alagille Syndrome/diagnosis , Alagille Syndrome/therapy , Alagille Syndrome/genetics , Nursing Diagnosis , Patient Care
13.
Hepatol Int ; 17(5): 1098-1112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584849

ABSTRACT

Alagille syndrome (ALGS) is a complex rare genetic disorder that involves multiple organ systems and is historically regarded as a disease of childhood. Since it is inherited in an autosomal dominant manner in 40% of patients, it carries many implications for genetic counselling of patients and screening of family members. In addition, the considerable variable expression and absence of a clear genotype-phenotype correlation, results in a diverse range of clinical manifestations, even in affected individuals within the same family. With recent therapeutic advancements in cholestasis treatment and the improved survival rates with liver transplantation (LT), many patients with ALGS survive into adulthood. Although LT is curative for liver disease secondary to ALGS, complications secondary to extrahepatic involvement remain problematic lifelong. This review is aimed at providing a comprehensive review of ALGS to adult clinicians who will take over the medical care of these patients following transition, with particular focus on certain aspects of the condition that require lifelong surveillance. We also provide a diagnostic framework for adult patients with suspected ALGS and highlight key aspects to consider when determining eligibility for LT in patients with this syndrome.


Subject(s)
Alagille Syndrome , Liver Transplantation , Adult , Humans , Alagille Syndrome/genetics , Alagille Syndrome/therapy , Alagille Syndrome/complications
14.
Curr Gastroenterol Rep ; 25(11): 344-354, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37651067

ABSTRACT

PURPOSE OF REVIEW: Cholestasis is characterized by a conjugated hyperbilirubinemia secondary to impaired bile synthesis, transport, or excretion from the liver. It is always pathologic and can be indicative of an underlying hepatobiliary, genetic, or metabolic disorder, several of which require timely diagnosis to ensure proper management and optimal outcomes. This review provides an overview of the evaluation of cholestasis with a focus on current and emerging treatment strategies. RECENT FINDINGS: Increased accessibility of next generation sequencing (NGS) allows for utilization of genetic testing early in the diagnostic process. This may alter the clinical algorithm for diagnosis of cholestatic disorders. An enhanced understanding of the underlying pathophysiology may help guide future development of targeted therapies, such as ileal bile acid transporter (IBAT) inhibitors. These were recently approved for treatment of cholestatic pruritus in patients with Alagille syndrome and Progressive Familial Intrahepatic Cholestasis. Current management of cholestasis is aimed at the biochemical consequences of impaired bile flow, including malnutrition, pruritus, and progressive fibrosis. NGS has led to an enhanced understanding of biliary pathology and may guide development of future treatment modalities based on specific gene mutations. Rapid discernment of the underlying etiology is essential as new treatment modalities emerge.


Subject(s)
Alagille Syndrome , Cholestasis, Intrahepatic , Cholestasis , Humans , Child , Infant , Child, Preschool , Cholestasis/complications , Cholestasis/diagnosis , Cholestasis, Intrahepatic/diagnosis , Alagille Syndrome/complications , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Pruritus/diagnosis , Pruritus/etiology , Pruritus/therapy
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511516

ABSTRACT

Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the JAG1 or NOTCH2 gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS. We used an NGS panel targeting coding exons of 52 genes, including the JAG1 and NOTCH2 genes. Sanger sequencing was used to verify the mutation in the affected individuals and family members. The specific facial phenotype was seen in 16/18 (88.9%). Heart defects were seen in 8/18 (44.4%) patients (pulmonary stenosis in 7/8). Butterfly vertebrae were seen in 5/14 (35.7%) patients. Renal involvement was detected in 2/18 (11.1%) cases-one patient had renal cysts, and one had obstructive hydronephrosis. An ophthalmology examination was performed on 12 children, and only one had posterior embryotoxon (8.3%). A percutaneous liver biopsy was performed in nine cases. Bile duct paucity was detected in six/nine cases (66.7%). Two patients required liver transplantation because of cirrhosis. We identified nine novel variants in the JAG1 gene-eight frameshift variants (c.1619_1622dupGCTA (p.Tyr541X), c.1160delG (p.Gly387fs), c.964dupT (p.C322fs), c.120delG (p.L40fs), c.1984dupG (p.Ala662Glyfs), c.3168_3169delAG (p.R1056Sfs*51), c.2688delG (p.896CysfsTer49), c.164dupG (p.Cys55fs)) and one missense variant, c.2806T > G (p.Cys936Gly). None of the patients presented with NOTCH2 variants. In accordance with the classical criteria, only six patients could meet the diagnostic criteria in our cohort without genetic analysis. Genetic testing is important in the diagnosis of ALGS and can help differentiate it from other types of cholestasis.


Subject(s)
Alagille Syndrome , Cholestasis , Humans , Alagille Syndrome/complications , Alagille Syndrome/genetics , Cholestasis/genetics , Mutation , Mutation, Missense , Phenotype , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism
16.
Stem Cell Res ; 70: 103120, 2023 08.
Article in English | MEDLINE | ID: mdl-37245339

ABSTRACT

Pathogenic variants in Jagged-1 (JAG1), which encodes the ligand of the Notch receptor, had been demonstrated to cause Alagille syndrome. However, there is no evidence to support any genotype-phenotype correlations. Here, we generated a gene-edited human embryonic stem cell (hESC) line (H9) carrying the c.1615C > T mutation in JAG1 that was identified in a patient with Alagille syndrome (ALGS). This modified cell line was accomplished by using cytosine base editor (CBE), and may serve as a valuable model for JAG1 mutaion related disease, and facilitate to gain more insight into the biological function of JAG1.


Subject(s)
Alagille Syndrome , Human Embryonic Stem Cells , Humans , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Alagille Syndrome/pathology , Human Embryonic Stem Cells/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Phenotype , Mutation/genetics , Cell Line
17.
Hepatology ; 78(5): 1337-1351, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37021797

ABSTRACT

BACKGROUND AND AIMS: Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS: Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS: Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.


Subject(s)
Alagille Syndrome , Glycosyltransferases , Liver , Oligonucleotides, Antisense , Animals , Mice , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Alagille Syndrome/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Calcium-Binding Proteins/genetics , Cholestasis/genetics , Cholestasis/metabolism , Gene Silencing , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Liver/metabolism , Liver/pathology , Membrane Proteins/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Phenotype , Serrate-Jagged Proteins/genetics , Serrate-Jagged Proteins/metabolism
18.
J Clin Gastroenterol ; 57(7): 686-693, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37022007

ABSTRACT

Children with cholestatic liver diseases are increasingly living into adulthood, thanks to innovations in medical and surgical therapies. The excellent outcomes observed in pediatric liver transplantation for diseases, such as biliary atresia, have transformed the life trajectory of children born with once-fatal liver diseases. The evolution of molecular genetic testing, has helped expedite the diagnosis of other cholestatic disorders, improving the clinical management, disease prognosis, and family planning for inherited disorders, such as progressive familial intrahepatic cholestasis and bile acid synthesis disorders. The expanding list of therapeutics, including bile acids and the newer ileal bile acid transport inhibitors, has also helped slow the progression of disease and improve the quality of life for certain diseases, like Alagille syndrome. More and more children with cholestatic disorders are expected to require care from adult providers familiar with the natural history and potential complications of these childhood diseases. The aim of this review is to bridge the gap between pediatric and adult care in children with cholestatic disorders. The present review addresses the epidemiology, clinical features, diagnostic testing, treatment, prognosis, and transplant outcomes of 4 hallmark childhood cholestatic liver diseases: biliary atresia, Alagille syndrome, progressive familial intrahepatic cholestasis, and bile acid synthesis disorders.


Subject(s)
Alagille Syndrome , Biliary Atresia , Cholestasis, Intrahepatic , Cholestasis , Gastroenterologists , Child , Adult , Humans , Biliary Atresia/diagnosis , Biliary Atresia/therapy , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Alagille Syndrome/therapy , Quality of Life , Cholestasis/diagnosis , Cholestasis, Intrahepatic/diagnosis , Cholestasis, Intrahepatic/epidemiology , Cholestasis, Intrahepatic/genetics , Bile Acids and Salts
19.
J Med Case Rep ; 17(1): 186, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101309

ABSTRACT

BACKGROUND: Chromosome 5p partial monosomy (5p-syndrome) and chromosome 6p partial trisomy are chromosomal abnormalities that result in a variety of symptoms, but liver dysfunction is not normally one of them. Alagille syndrome (OMIM #118450) is a multisystem disorder that is defined clinically by hepatic bile duct paucity and cholestasis, in association with cardiac, skeletal, and ophthalmologic manifestations, and characteristic facial features. Alagille syndrome is caused by mutations in JAG1 on chromosome 20 or NOTCH2 on chromosome 1. Here, we report a preterm infant with karyotype 46,XX,der(5)t(5,6)(p15.2;p22.3) and hepatic dysfunction, who was diagnosed as having incomplete Alagille syndrome. CASE PRESENTATION: The Japanese infant was diagnosed based on the cardiac abnormalities, ocular abnormalities, characteristic facial features, and liver pathological findings. Analysis of the JAG1 and NOTCH sequences failed to detect any mutations in these genes. CONCLUSIONS: These results suggest that, besides the genes that are known to be responsible for Alagille syndrome, other genetic mutations also may cause Alagille syndrome.


Subject(s)
Alagille Syndrome , Infant , Humans , Infant, Newborn , Alagille Syndrome/diagnosis , Alagille Syndrome/genetics , Alagille Syndrome/pathology , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Infant, Premature , Karyotype
20.
PLoS One ; 18(4): e0285019, 2023.
Article in English | MEDLINE | ID: mdl-37099537

ABSTRACT

INTRODUCTION: Alagille syndrome (ALGS) is an autosomal dominant disease characterized by a multisystem involvement including bile duct paucity and cholestasis, caused by JAG1 or NOTCH2 mutations in most of the cases. Jagged1-Notch2 interactions are known to be crucial for intrahepatic biliary tract development, but the Notch signaling pathway is also involved in the juxtacrine transmission of senescence and in the induction and modulation of the senescence-associated secretory phenotype (SASP). AIM: Our aim was to investigate premature senescence and SASP in ALGS livers. METHODS: Liver tissue from ALGS patients was prospectively obtained at the time of liver transplantation (n = 5) and compared to control livers (n = 5). RESULTS: We evidenced advanced premature senescence in the livers of five JAG1 mutated ALGS pediatric patients through increased senescence-associated beta-galactosidase activity (p<0.05), increased p16 and p21 gene expression (p<0.01), and increased p16 and γH2AX protein expression (p<0.01). Senescence was located in hepatocytes of the whole liver parenchyma as well as in remaining bile ducts. The classical SASP markers TGF-ß1, IL-6, and IL-8 were not overexpressed in the livers of our patients. CONCLUSIONS: We demonstrate for the first time that ALGS livers display important premature senescence despite Jagged1 mutation, underlying the complexity of senescence and SASP development pathways.


Subject(s)
Alagille Syndrome , Biliary Atresia , Humans , Liver/metabolism , Alagille Syndrome/genetics , Bile Ducts/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mutation , Cellular Senescence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...